Complex Analysis Study Guide Test 3

The test is Monday April 24. No calculators. Closed notes.

Material for test 3:

- Everything from the $2^{\text {nd }}$ test to this week.
- Results from Cauchy's Integral Formula
- Complex Sequences
- Taylor Series
- Laurent Series
- Singularities
- Analytic Continuation
- Residue Theory
- Real integrals on $(-\infty, \infty)$.

Practice problems

Below are a selection of problems from our textbooks that looks like reasonable problems that could appear on a test. An "easy" problem means that you should be able to jump right in and start solving it immediately. A "medium" problem means it is expected that you'll need to think a little before solving the problem. A "hard" problem means you'll need to think a lot and maybe work out some details before solving the problem.

Easy Problems

1. Find and describe the singularities and residues of $f(z)=\frac{e^{2 z}-1}{z^{2}}$ (R3.5.1.b)
2. Find and describe the singularities and residues of $f(z)=\log \left(1+z^{\frac{1}{2}}\right)$ (R3.5.1.f)
3. Find and describe the singularities and residues of $f(z)=\frac{z}{\sin ^{2}(z)} \quad$ (R3.5.3.C)
4. Where on the plane can the function $f(z)=\sum_{k=0}^{\infty} z^{k},|z|<\frac{1}{2}$, be analytically continued to?
5. Find a closed form expression for $\sum_{k=1}^{\infty} z^{k}(1-z)$ (6.2)
6. Find the region of convergence of $\sum_{k=1}^{\infty} \frac{z^{k}}{k(k+1)}$ (6.10)
7. Find the region of convergence of $\sum_{k=1}^{\infty} \frac{(z+2)^{k-1}}{(k+1)^{3} 4^{k}}$
8. Find the series expansion for $\frac{e^{2 z}}{(z-1)^{3}}$ centered at $z=1$. (6.26a)
9. Find the series expansions for $\frac{1}{(z+1)(z+3)}$ centered at 1 . (Three different answers that cover almost the entire plane) (6.27 a)
10. Find the residue of $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ at each of its poles. (7.4)
11. Find $\int_{C} \frac{e^{z t}}{z^{2}\left(z^{2}+2 z+2\right)} d z$ where $C=\{z \in \mathbb{C}:|Z|=3\}$ (7.6)
12. Find $\int_{-\infty}^{\infty} \frac{1}{x^{2}+49} d x$ using complex analysis. (R4.2.1.a)
13. Find $\int_{0}^{\infty} \frac{1}{x^{6}+1} d x$ using complex analysis (7.9)
14. Find $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}\left(x^{2}+2 x+2\right)} d x$ using complex analysis. (7.10)
15. Find $\int_{-\infty}^{\infty} \frac{x \sin (\pi x)}{x^{2}+2 x+5} d x$ using complex analysis. (7.17)

Medium problems

1. Find $\int_{0}^{\infty} \frac{\ln \left(x^{2}+1\right)}{x^{2}+1} d x$ using complex analysis. (7.22)
2. Where on the plane can the function $f(z)=\sum_{k=0}^{\infty} z^{4^{k}},|z|<\frac{1}{2}$ be analytically continued to? (R3.5.3.c)
3. Find the series expansion for $\log (1+z)$ without using Taylor series. (6.23)
4. Find the series expansion for $\frac{z}{(z+1)(z+2)}$ centered at $z=-2(6.26 \mathrm{~d})$
5. Find the series expansion for $\frac{e^{2 z}}{(z-1)^{3}}$ centered at $z=2$.
6. Find the series expansion for $\frac{e^{2 z}}{(z-1)^{3}}$ centered at $z=0$.
7. Find the closed form expression for $-\sum_{k=0}^{\infty}(k+1)^{n}$ (R3.2.5.a)
8.
9.

Hard problems

1. Find $\int_{C} \frac{\left(z+\frac{1}{z}\right)^{2 n}}{z} d z$ where C is the unit circle. (R3.2.10)
